
N87-26562

SOLUTION OF LARGE LINEAR SYSTEMS OF EQUATIONS
ON THE MASSIVELY PARALLEL PROCESSOR

Nathan Ida Kapila Udawatta

Electrical Engineering Department

The University of Akron
Akron, Ohio 44325

ABSTRACT

The Massively Parallel Processor,
has been designed as a special machine

for specific applications in image

processing. As a parallel machine, with
a large number of processor that can be

reconfigured in different combinations

it is also applicable to other problems

that require a large number of

processors. This work investigates the

solution of linear systems of equations
on the MPP. The solution times achieved

are compared to those obtained with a

serial machine and the performance of
the MPP is discussed.

INTRODUCTION

The advantage of a parallel

computer is in its potential ability to

solve large problems in realistic

solution times. In particular, as the

improvements in speed of single

processor computers approach intrinsic

limits, the appeal of parallel

processing becomes more significant.

Yet, beyond the fact that some problems

have little or no natural parallelism,
the performance of such machines is not

known with any accuracy. The ideal
performance is of course well defined.

It depends on the number of processors

and their speed. Thus, upper and lower

limits on computation speed can always
be obtained. This does not take into

account a variety of considerations

like I/O and other degradation factors.

Thus, in the ideal case, the speedup

achieved through parallel processing

is equal to the number of processors

[I]. A variety of factors influence the

performance to reduce the speedup

considerably. Among these factors, the

competition of processors for hardware
and the interaction between the

parallel processes are the most

important [2]. Obviously, the algorithm
to be executed has a drastic influence

on the performance. Ideally, the

algorithm has intrinsic parallelism
such that there is no need to idle

processors. In reality, this is not the

ease and there are always serial

operations to be performed. Again, in

the limit, when no parallel operation

can be performed, the parallel

processor is used as a serial computer.

Estimating the performance of a

parallel processor for any particular

type of problems is not a trivial

process. In many cases this cannot be

done without actually solving the

problem and then evaluating the

performance. Thus, the need to evaluate

a computer's performance on well

documented problems or benchmarks

becomes extremely important,

particularly with parallel processors.

With all this, one can safely assume

that some degree of parallelism does

exist in most algorithms and therefore
an improvement in solution time

compared with serial machines can be
realized.

257

The work presented here attempts

to establish the usefulness of a

parallel processor, the Massively

Parallel Processor (MPP), for the

solution of systems of linear

equations. No attempt is made to either

optimize code or to establish exact

performance figures. Such an attempt is

beyond the scope of this paper and

would require considerably more work.

Instead, the emphasis is on a

particular simple algorithm and on the

comparison of performance with a serial

computer (the Microvax II). The type of

systems solved are those arising from

the application of the finite element

method to engineering applications. The

finite element method is particularly

computationally intensive. By using a

parallel processor, it is conceivable

that considerably faster solution times

can be achieved or, alternatively,

larger problems can be solved.

The solution method chosen for

evaluation is the Gauss elimination

method. It is used as representative to

direct solution methods and because for

the majority of practical applications

it is used almost exclusively. The

results will therefore be useful for

implementation of other similar methods

like the Gauss-Jordan or the Choleski

decomposition methods.

The system in Eq. (1) is assumed

to be symmetric, positive definite for

the purpose of this work although none

of these requirements is necessary in

general. The elimination is done in the

following order:

Equation la is divided by its

diagonal coefficient to obtain

x1+a12/allX2+a13/a11X3 +...

.... +aln/allXnfC1/a11 (2)

Equation (2) is multiplied by the

first coefficient of (lb)

a21X1+a21a12/a11X2 +

• ..+a21a2n/a11Xn=C1a21/a11 (3)

Eq. (3) is subtracted from Eq.

(Ib) to eliminate the coefficient of X_

from Eq. (Ib). In the next step, Eq!

(2) is multiplied by the first

coefficient in Eq. (Ic). Subtraction as

previously results in elimination of

the coefficient of X_ in Eq. (Ic).

Repeating this for al_ the remaining

coefficients in the first column

results in the following system:

GAUSS ELIMINATION

Consider the following system of n

equations with n unknowns:

a11X1+a12X2+a13X3 + +alnXn=C1 (la)

a21X1+a22X2+a23X3+ +a2nXn=C2 (Ib)

a31X1+a32X2+a33X3+ +a3nXn=C 3 (Ic)

aniX1+an2X2+an3X3 + +annXn=Cn (In)

a11X1 + a12X2+ a13X3+ + alnX n

=C I (4a)

a'22X2+a' 23X3 ++a'2nX n

=C' 2 (4b)

a'32X2+a'33X3+ +a'3nX n

=C' 3 (4c)

a'n2X2+a' X + +a'nnX nn3 3

=C' (4n)
n

2_8

In this set, all coefficients were

altered except for those in the first

row. It is important to note that the

operations are done on a whole row at a

time, a property which will be

exploited later for parallel

calculation.

The elimination proceeds by

repeating the whole process starting

with the second equation. After n-1

such elimination steps, the original

system is reduced to an upper

triangular system:

a11X1+ a12X2+ a13X3+ + alnX n

= C 1 (5a)

a'22X2+ a'23X3+ + a'2nX n

=C'2 (5b)

a"33X3+ +a" X3n n

=C' 3 (50)

n
a X

nn n

=Cn (5n)
n

The elimination step, which is

done in place (i.e. in the same

locations the original matrix resides),

is followed by a baeksubstitution step.

This starts by calculating X
n

n n
Xn = C nla nn (6a)

The rest of the unknowns are

calculated as:

n

Xi : [C i - _ a_,X,]la.. (6b)
j=i_ xJ J zz

where i = n-l, n-2, , I and C i
are the modified right hand sides in
Eq. (5).

THE MASSIVELY PARALLEL PROCESSOR

For the solution of linear

systems, the two most important aspects

related to the MPP are the number of

memory planes in the ARU and the size

of the staging memory available for

use. Although the ARU contains 1024 bit

planes of memory, the programmer can

use only bit planes from 0 to 973. Bit

planes from 974 to 1023 are reserved

for use by system software (Control and

Debug). This limits the number of

128"128 real arrays (32 bit floating

point arrays) in the ARU to 30. Without

taking into consideration any necessary

scratch arrays, the capacity of the

ARU is limited to one 640*640 real

array or an equivalent size array. In

practical terms, since scratch arrays

are needed, the limit is lower. A

matrix of 512"512 is the limit if

increments in size of 128"128 are to be

used.

The staging memory has a capacity

of 32 Megabytes. This limits the number

of stored 128"128 real arrays in the

stager to 512.

It is important to note that the

parallel Pascal callable I/0 procedures

can transfer only one 128"128 array in

or out of the ARU at any one time. This

makes it necessary for any array larger

than 128"128 to be blocked into sub-

arrays of 128"128 by assigning the

larger array two more dimensions.

Blocking of a 512"512 array is given in

Fig. 1.

Other aspects of programming on

the MPP are not discussed here although

they are necessary for implementation.

These can be found in a variety of

references [3,4,9-15].

259

IMPLEMENTATION ON THE MPP

Since the minimum data array that

can reside in the ARU is 128"128, as a

first step the Gaussian elimination was

implemented for an array of this size.

In addition to the data array, three

more real arrays (32 bit) and one

boolean array were used as scratch

space for the Gaussian elimination.

That is, 97 bit planes were used as

scratch space.

The algorithm used for Gaussian

elimination of an 128"128 array can be

written in pseudo code as

DO UNTIL # ROWS = 128

BEGIN

NEW ARRAY <-- PIVOT ROW FROM ORIGINAL

ARRAY;

PIVOT ELEMENT ARRAY <-- NEW ARRAY;

MULTIPLIER ARRAY <-- ORIGINAL ARRAY;

NEW ARRAY <-- NEW ARRAY/PIVOT ELEMENT

ARRAY;

NEW ARRAY <-- NEW ARRAY*MULTIPLIER

ARRAY;

ORIGINAL ARRAY <-- ORIGINAL ARRAY - NEW

ARRAY;

END;

The parallel Pascal code for

Gaussian elimination of an 128"128

array was used as the building block

and was extended for larger arrays. An

array of 512'512 was chosen since this

is the maximum array that can reside in

the ARU. Scanning of the 512"512 array,

by a block of 128"128, is given in Fig.

2.

A theoretical calculation of

timing for an array of 1024"1024 was

also done. The 1024"1024 array was

blocked into four sub-arrays of 512"512

and at any given time one 512"512 sub-

array resided in the ARU. The actual

time needed for loading/unloading the

ARU with a 512"512 real array is 590

ms. The time needed to eliminate 2

columns from a 512"512 real array is

10 ms. A real array of 512"512 occupies

512 bit planes. This leaves the ARU

with 14 real arrays to be used as

scratch space. Of these, one plane is

necessary to use as a boolean array for

the mask plane. This makes it possible

to save 14 "coefficient" arrays in the

ARU. By saving 14 coefficient arrays it

is possible to eliminate 2 columns from

any of the four 512"512 sub-arrays, the

Gaussian elimination on the 1024"1024

real array can be written in pseudo

code as

DO L = I To 2

BEGIN

DO K = I TO 256

BEGIN

DO I - L TO 2

DOJ=LT02

BEGIN

IF L - I THEN

BEGIN

ELIMINATE 2 COLUMNS FROM

SUB-ARRAY;

UNLOAD SUB-ARRAY TO STAGER

WHILE LOADING NEW SUB-ARRAY

TO ARU ;

END;
ELIMINATE 512 COLUMNS FROM

LAST SUB-ARRAY ;

END;

END;

END;

RESULTS

The solution times for Gaussian

elimination of an 128"128, 512"512 and

1024"1024 real arrays on the MPP are

summarized and compared with the

solution times for the same arrays on a

Microvax-II. The performance of the MPP

compared to a serial computer is

illustrated in Fig. 3-

Arrays below the size of 27*27 can

be solved on the Microvax-II computer

and obtain the same performance as on

260

the MPP. The array size below which it

is more economical to use a serial

computer, depends on the type of the
serial computer.

But, as seen in Table I and Fig.

3, the performance of the parallel
computer (MPP) improves with the

increase of the size of the data array

and drops sharply once the data array

exceeds the memory space of the ARU.

Taking into account the actual times

involved, the MPP is much faster than a
serial machine.

It is important to note that the

algorithms used for the MPP were not

optimized, since the study involved

only understanding the performance of

the MPP in solving large systems of

linear equations and not the precise

evaluation of the MPP performance. Fig.

3 clearly shows the tendency of the
behavior of the MPP. In addition to the

algorithms being nonoptimized, no

attempt was made to taylor the

algorithm to a particular type of

problem. For example, consider the

matrices generated by finite element

modeling which are banded (and, in many
cases, symmetric).

For this type of matrices great
advantage can be taken of the fact that

the matrix has a limited bandwidth. The

shaded areas in Fig. 4 show the sub-

arrays (128"128) that could be used

while solving (scanning) a 512"512
banded matrix with a bandwidth which is

less than 128.

The performance can also be

changed by using different blocking

techniques for larger arrays. It will

be interesting to see the performance

when a 1024"1024 array is blocked not

as four arrays of 512"512, but four

1024"256 arrays. In this way, the

optimal blocking of large arrays for
particular problems can be chosen.

The experience gained here clearly
shows not only that the solution of

large systems of equations is possible

and faster than that possible on serial
machines but also that there is an

alternative between using large arrays

or smaller arrays with large memory.
The structure of the MPP allows the

user to fit a matrix as large as the

memory of the stager. Clearly, if the

matrix can be fitted in the ARU, the
solution will be faster than for the

case where parts of the matrix need to

be retrieved from the stager or from
the front end computer.

From the results presented above

it can be seen that an 1024"1024 array
(for example) will solve a 1024"1024

matrix in about 48 ms which means a

speedup of about 69,320 against the

speedup of 6.6 for an 128"128 array.

At the same time, an 128"128 array

with large memory (large enough to
contain the matrix) can solve a

1024"1024 matrix in 4.21 s, resulting
in a speedup of 823 compared to 6.6

with a Ik memory.

As it stands now, the tendency

seems to be towards larger arrays but

it will be interesting to study the
performance of these machines with

larger memories which are by nature

less expensive than processors.

CONCLUSIONS

The results presented in this work

show that the Massively Parallel

Processor is particularly suited to the

solution of problems which can fit in

the ARU. The speedup obtained compared

to serial computers is in the hundreds.

Not surprisingly, the performance

deteriorates somewhat when parts of the

matrix need to be brought in from the

stager. The deterioration in

performance is quite dramatic when the

matrix does not fit into the stager and

there is a need to perform considerable

261

I/O. With all this, the solution is

always faster than for serial

computers.

REFERENCES

I •

o

.

.

o

Q

To

.

o

K. Hwang, F. A. Briggs, "Computer

architecture and parallel

processing", McGraw-Hill Book

Company, New York, 1964.

T. Axerold, "Comparing the

performance of parallel computers",

Compcon, spring 1985.

K. E. Batcher, "Design of a

massively parallel processor", IEEE

Transactions on Computers, Vol. C-

29, No. 9, September 1980.

K. E. Batcher, "Architecture of the

MPP", IEEE Computer Society on

Computer Architecture for Pattern

Analysis and Image Database

Management Proceedings, October

1983, pp. 170-174.

P. B. Hansen, "The programming

language concurent Pascal", IEEE

Transactions on Software

Engineering, Vol. SE-I, No. 2, June

1975.

"MPP I/O control unit",

Aerospace Corporation,

April 1983.

Goodyear

GER-16679,

"MPP main control unit",

Aerospace Corporation,

April 1983.

Goodyear

GER-16659,

"MPP PE control unit", Goodyear

Aerospace Corporation, GER-16650,

June 1983.

"MPP Staging memory",

Aerospace Corporation,

March 1981.

Goodyear

GER-16964,

10.

11.

12.

13.

14.

15.

"MPP staging memory manager",

Goodyear Aerospace Corporation,

GER-17062, April 1983.

"MPP user's guide", NASA Goddard

Space Flight Center, January 1986.

"Parallel Pascal callable I/0

procedure", NASA Goddard Space

Flight Center, January 1986.

"Parallel Pascal language reference

manual", MUD-210, Version 2.

A. P. Reeves, "Parallel Pascal:

an extended Pascal for parallel

computers", Journal of Parallel

and Distributed Computing I, Vol.

64, 1980.

"Theory of the MPP hardware

operation", Goodyear Aerospace

Corporation, GER-17143, April

1983.

Table I. Processing speeds of Microvax-

II and MPP

Array Microvax MPP Speedup

16"16 10 ms 48.07 ms 0.2

27*27 50 ms 48.07 ms 1.0

128"128 5500 ms 48.07 ms 114

512"512 340 see 1.272 sec 267

1024"1024 57.76 min 8.12 min 6.6

262

.O_/GEqAL PAGE. IS

D_ _OR QUALrrY.

Dim. 1

Dim. iDim. 3

Dim • 5

it
112s

128 .-

I

i
i

I 32

512 ---

112

Figure I. Blocking and dimensioning of

512w512 array into sub-

arrays 128m128 insize.

10 4 Processing Time
(sec.]

10 3

10 2

101

l, _ _ MPP

i0-_

10-2

, , , , --__nl°-3 1% 3'2 6_ lh 2s'o s1'2 lo'h
array size n*n

Figure 3. Processing time of the MPP

and the Microvax-II vs.

array size.

J
/

/
J

L S
/ __

/

/

Figure 2. Mode of scanning a 512m512

array in blocks of 128w128.

Figure 4. Possible scanning of a banded

matrix with bandwidth of 128

or less.

263

